Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions be/src/vec/exprs/lambda_function/lambda_function_factory.h
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ class LambdaFunctionFactory;

void register_function_array_map(LambdaFunctionFactory& factory);
void register_function_array_filter(LambdaFunctionFactory& factory);
void register_function_array_sort(LambdaFunctionFactory& factory);

class LambdaFunctionFactory {
using Creator = std::function<LambdaFunctionPtr()>;
Expand Down Expand Up @@ -62,6 +63,7 @@ class LambdaFunctionFactory {
std::call_once(oc, []() {
register_function_array_map(instance);
register_function_array_filter(instance);
register_function_array_sort(instance);
});
return instance;
}
Expand Down
273 changes: 273 additions & 0 deletions be/src/vec/exprs/lambda_function/varray_sort_function.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

#include <glog/logging.h>

#include "common/status.h"
#include "vec/columns/column.h"
#include "vec/columns/column_array.h"
#include "vec/columns/column_nullable.h"
#include "vec/columns/column_varbinary.h"
#include "vec/columns/column_vector.h"
#include "vec/common/assert_cast.h"
#include "vec/core/block.h"
#include "vec/core/column_with_type_and_name.h"
#include "vec/data_types/data_type.h"
#include "vec/exprs/lambda_function/lambda_function.h"
#include "vec/exprs/lambda_function/lambda_function_factory.h"
#include "vec/exprs/vexpr.h"
#include "vec/utils/util.hpp"

namespace doris::vectorized {
#include "common/compile_check_begin.h"

class VExprContext;

using ConstColumnVariant =
std::variant<const ColumnUInt8*, const ColumnInt8*, const ColumnInt16*, const ColumnInt32*,
const ColumnInt64*, const ColumnInt128*, const ColumnFloat32*,
const ColumnFloat64*, const ColumnString*, const ColumnVarbinary*,
const ColumnArray*, const ColumnIPv4*, const ColumnIPv6*,
const ColumnDecimal32*, const ColumnDecimal64*, const ColumnDecimal128V2*,
const ColumnDecimal128V3*, const ColumnDecimal256*, const ColumnDate*,
const ColumnDateTime*, const ColumnDateV2*, const ColumnDateTimeV2*,
const ColumnTime*, const ColumnTimeV2*>;

template <typename T>
struct is_column_vector : std::false_type {};

template <PrimitiveType T>
struct is_column_vector<ColumnVector<T>> : std::true_type {};

template <typename T>
inline constexpr bool is_column_vector_v = is_column_vector<T>::value;

class ArraySortFunction : public LambdaFunction {
ENABLE_FACTORY_CREATOR(ArraySortFunction);

public:
~ArraySortFunction() override = default;
static constexpr auto name = "array_sort";

static LambdaFunctionPtr create() { return std::make_shared<ArraySortFunction>(); }

std::string get_name() const override { return name; }

Status execute(VExprContext* context, const vectorized::Block* block, ColumnPtr& result_column,
const DataTypePtr& result_type, const VExprSPtrs& children) const override {
///* array_sort(lambda, arg) *///

DCHECK_EQ(children.size(), 2);

// 1. get data, we need to obtain this actual data and type.
ColumnPtr column_ptr;
RETURN_IF_ERROR(children[1]->execute_column(context, block, column_ptr));
DataTypePtr type_ptr = children[1]->execute_type(block);

auto column = column_ptr->convert_to_full_column_if_const();

auto input_rows = column->size();

auto arg_type = type_ptr;
auto arg_column = column;

ColumnPtr outside_null_map = nullptr;

if (arg_column->is_nullable()) {
arg_column = assert_cast<const ColumnNullable*>(column.get())->get_nested_column_ptr();
outside_null_map =
assert_cast<const ColumnNullable*>(column.get())->get_null_map_column_ptr();
arg_type = assert_cast<const DataTypeNullable*>(type_ptr.get())->get_nested_type();
}

const auto& col_array = assert_cast<const ColumnArray&>(*arg_column);
const auto& off_data =
assert_cast<const ColumnArray::ColumnOffsets&>(col_array.get_offsets_column())
.get_data();

const auto& nested_nullable_column =
assert_cast<const ColumnNullable&>(*col_array.get_data_ptr());

auto pType = assert_cast<const DataTypeArray*>(arg_type.get())
->get_nested_type()
->get_primitive_type();

// Get the actual type data based on PrimitiveType.
ConstColumnVariant src_data;
RETURN_IF_ERROR(
get_data_from_type(pType, nested_nullable_column.get_nested_column(), src_data));

const auto& src_nullmap = nested_nullable_column.get_null_map_column();

const auto& col_type = assert_cast<const DataTypeArray&>(*arg_type);

// 2. prepare a lambda_block for lambda execution
auto element_size = nested_nullable_column.size();
IColumn::Permutation permutation(element_size);
for (size_t i = 0; i < element_size; ++i) {
permutation[i] = i;
}

/**
* suppose the data_type is nullable(int). The first two rows are the parameter columns, and the
* last row is the result column(type: tinyint). every column's size is 1. the lambda_block is
* row data nullmap type
* 0 10 0 nullable(int)
* 1 20 1 nullable(int)
* 2 1/-1/0 ... tinyint
* The size of a column is always 1; we only need to use it to store the specific values ​​in the array for comparison.
*/
Block lambda_block;
for (int i = 0; i <= 2; i++) {
lambda_block.insert(vectorized::ColumnWithTypeAndName(
nested_nullable_column.clone_empty(), col_type.get_nested_type(), "temp"));
}

MutableColumnPtr temp_data[2];
NullMap* temp_nullmap_data[2] = {nullptr, nullptr};
for (int i = 0; i < 2; i++) {
auto* temp_column = assert_cast<ColumnNullable*>(
lambda_block.get_by_position(i).column->assume_mutable().get());
temp_data[i] = temp_column->get_nested_column_ptr();
auto& null_map_col = assert_cast<ColumnUInt8&>(temp_column->get_null_map_column());
temp_nullmap_data[i] = &null_map_col.get_data();
temp_data[i]->resize(1);
temp_nullmap_data[i]->resize(1);
};

int lambda_res_id = 2;

// 3. sort array by executing lambda function
// During the sorting process, the parameter columns of lambda_block are first populated using prepare_lambda_input,
// and then the lambda function is executed to obtain the result.
std::visit(
[&](auto* data) {
using ColumnType = std::decay_t<decltype(*data)>;
ColumnType* data_vec[2] = {assert_cast<ColumnType*>(temp_data[0].get()),
assert_cast<ColumnType*>(temp_data[1].get())};

// If columnType is ColumnVector<T>, use `get_data()[0]`;
// otherwise, need to clear it first, and then use `insert_from`.
auto prepare_lambda_input = [&](size_t i, size_t cid) {
if (src_nullmap.get_data()[i]) {
(*temp_nullmap_data[cid])[0] = 1;
} else {
(*temp_nullmap_data[cid])[0] = 0;
if constexpr (is_column_vector_v<ColumnType>) {
data_vec[cid]->get_data()[0] = data->get_data()[i];
} else {
data_vec[cid]->clear();
data_vec[cid]->insert_from(*data, i);
}
}
};

for (int row = 0; row < input_rows; ++row) {
auto start = off_data[row - 1];
auto end = off_data[row];
std::sort(&permutation[start], &permutation[end], [&](size_t i, size_t j) {
prepare_lambda_input(i, 0);
prepare_lambda_input(j, 1);
auto status =
children[0]->execute(context, &lambda_block, &lambda_res_id);
if (!status.ok()) [[unlikely]] {
throw Status::InternalError(
"when execute array_sort lambda function: {}",
status.to_string());
}

// raw_res_col maybe columnVector or ColumnConst
ColumnPtr raw_res_col =
lambda_block.get_by_position(lambda_res_id).column;
ColumnPtr full_res_col = raw_res_col->convert_to_full_column_if_const();

// only -1, 0, 1
long cmp = assert_cast<const ColumnInt8*>(full_res_col.get())
->get_data()[0];

return cmp < 0;
});
}
},
src_data);

// 4. set the result to result_column
ColumnWithTypeAndName result_arr;
if (result_type->is_nullable()) {
result_column = ColumnNullable::create(
ColumnArray::create(nested_nullable_column.permute(permutation, 0),
col_array.get_offsets_ptr()),
outside_null_map);

} else {
DCHECK(!column->is_nullable());
result_column = ColumnArray::create(nested_nullable_column.permute(permutation, 0),
col_array.get_offsets_ptr());
}

return Status::OK();
}

#define DISPATCH_PRIMITIVE_TYPE(TYPE, COLUMN_CLASS) \
case TYPE: \
column_variant = &assert_cast<const COLUMN_CLASS&>(column); \
break;

Status get_data_from_type(PrimitiveType pType, const IColumn& column,
ConstColumnVariant& column_variant) const {
switch (pType) {
DISPATCH_PRIMITIVE_TYPE(TYPE_BOOLEAN, ColumnUInt8)
DISPATCH_PRIMITIVE_TYPE(TYPE_TINYINT, ColumnInt8)
DISPATCH_PRIMITIVE_TYPE(TYPE_SMALLINT, ColumnInt16)
DISPATCH_PRIMITIVE_TYPE(TYPE_INT, ColumnInt32)
DISPATCH_PRIMITIVE_TYPE(TYPE_BIGINT, ColumnInt64)
DISPATCH_PRIMITIVE_TYPE(TYPE_LARGEINT, ColumnInt128)
DISPATCH_PRIMITIVE_TYPE(TYPE_FLOAT, ColumnFloat32)
DISPATCH_PRIMITIVE_TYPE(TYPE_DOUBLE, ColumnFloat64)
DISPATCH_PRIMITIVE_TYPE(TYPE_CHAR, ColumnString)
DISPATCH_PRIMITIVE_TYPE(TYPE_STRING, ColumnString)
DISPATCH_PRIMITIVE_TYPE(TYPE_VARCHAR, ColumnString)
DISPATCH_PRIMITIVE_TYPE(TYPE_VARBINARY, ColumnVarbinary)
DISPATCH_PRIMITIVE_TYPE(TYPE_ARRAY, ColumnArray)
DISPATCH_PRIMITIVE_TYPE(TYPE_IPV4, ColumnIPv4)
DISPATCH_PRIMITIVE_TYPE(TYPE_IPV6, ColumnIPv6)
DISPATCH_PRIMITIVE_TYPE(TYPE_DECIMAL32, ColumnDecimal32)
DISPATCH_PRIMITIVE_TYPE(TYPE_DECIMAL64, ColumnDecimal64)
DISPATCH_PRIMITIVE_TYPE(TYPE_DECIMAL128I, ColumnDecimal128V3)
DISPATCH_PRIMITIVE_TYPE(TYPE_DECIMALV2, ColumnDecimal128V2)
DISPATCH_PRIMITIVE_TYPE(TYPE_DECIMAL256, ColumnDecimal256)
DISPATCH_PRIMITIVE_TYPE(TYPE_DATE, ColumnDate)
DISPATCH_PRIMITIVE_TYPE(TYPE_DATETIME, ColumnDateTime)
DISPATCH_PRIMITIVE_TYPE(TYPE_DATEV2, ColumnDateV2)
DISPATCH_PRIMITIVE_TYPE(TYPE_DATETIMEV2, ColumnDateTimeV2)
DISPATCH_PRIMITIVE_TYPE(TYPE_TIME, ColumnTime)
DISPATCH_PRIMITIVE_TYPE(TYPE_TIMEV2, ColumnTimeV2)
default:
return Status::InternalError("Unsupported type in array_sort");
}
return Status::OK();
}

#undef DISPATCH_PRIMITIVE_TYPE
};

void register_function_array_sort(doris::vectorized::LambdaFunctionFactory& factory) {
factory.register_function<ArraySortFunction>();
}

#include "common/compile_check_end.h"
} // namespace doris::vectorized
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,7 @@
import org.apache.doris.nereids.trees.expressions.functions.combinator.UnionCombinator;
import org.apache.doris.nereids.trees.expressions.functions.generator.TableGeneratingFunction;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArrayMap;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArraySort;
import org.apache.doris.nereids.trees.expressions.functions.scalar.DictGet;
import org.apache.doris.nereids.trees.expressions.functions.scalar.DictGetMany;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ElementAt;
Expand Down Expand Up @@ -571,6 +572,61 @@ public Expr visitArrayMap(ArrayMap arrayMap, PlanTranslatorContext context) {
return functionCallExpr;
}

@Override
public Expr visitArraySort(ArraySort arraySort, PlanTranslatorContext context) {
if (!(arraySort.child(0) instanceof Lambda)) {
return visitScalarFunction(arraySort, context);
}
Lambda lambda = (Lambda) arraySort.child(0);
List<Expr> arguments = new ArrayList<>(arraySort.children().size());
arguments.add(null);

// Construct the first column
ArrayItemReference arrayItemReference = lambda.getLambdaArgument(0);
String argName = arrayItemReference.getName();
Expr expr = arrayItemReference.getArrayExpression().accept(this, context);
arguments.add(expr);
ColumnRefExpr column = new ColumnRefExpr();
column.setName(argName);
column.setColumnId(0);
column.setNullable(true);
column.setType(((ArrayType) expr.getType()).getItemType());
context.addExprIdColumnRefPair(arrayItemReference.getExprId(), column);

// the second column here will not be used; it's just a placeholder.
arrayItemReference = lambda.getLambdaArgument(1);
ColumnRefExpr column2 = new ColumnRefExpr(column);
column2.setColumnId(1);
context.addExprIdColumnRefPair(arrayItemReference.getExprId(), column2);

List<Type> argTypes = arraySort.getArguments().stream()
.map(Expression::getDataType)
.map(DataType::toCatalogDataType)
.collect(Collectors.toList());
// two slots are same, we only need one
lambda.getLambdaArguments().stream().skip(1)
.map(ArrayItemReference::getArrayExpression)
.map(Expression::getDataType)
.map(DataType::toCatalogDataType)
.forEach(argTypes::add);
NullableMode nullableMode = arraySort.nullable()
? NullableMode.ALWAYS_NULLABLE
: NullableMode.ALWAYS_NOT_NULLABLE;
Type itemType = ((ArrayType) arguments.get(1).getType()).getItemType();
org.apache.doris.catalog.Function catalogFunction = new Function(
new FunctionName(arraySort.getName()), argTypes,
ArrayType.create(itemType, true),
true, true, nullableMode);

// create catalog FunctionCallExpr without analyze again
Expr lambdaBody = visitLambda(lambda, context);
arguments.set(0, lambdaBody);
LambdaFunctionCallExpr functionCallExpr = new LambdaFunctionCallExpr(catalogFunction,
new FunctionParams(false, arguments));
functionCallExpr.setNullableFromNereids(arraySort.nullable());
return functionCallExpr;
}

@Override
public Expr visitDictGet(DictGet dictGet, PlanTranslatorContext context) {
List<Expr> arguments = dictGet.getArguments().stream()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,7 @@ private UnboundFunction processHighOrderFunction(UnboundFunction unboundFunction
// bindLambdaFunction
Lambda lambda = (Lambda) unboundFunction.children().get(0);
Expression lambdaFunction = lambda.getLambdaFunction();
List<ArrayItemReference> arrayItemReferences = lambda.makeArguments(subChildren);
List<ArrayItemReference> arrayItemReferences = lambda.makeArguments(unboundFunction.getName(), subChildren);

List<Slot> boundedSlots = arrayItemReferences.stream()
.map(ArrayItemReference::toSlot)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArrayMatchAll;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArrayMatchAny;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArrayReverseSplit;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArraySort;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArraySortBy;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ArraySplit;
import org.apache.doris.nereids.trees.expressions.functions.scalar.ElementAt;
Expand Down Expand Up @@ -247,6 +248,17 @@ public Void visitArrayMap(ArrayMap arrayMap, CollectorContext context) {
return visit(arrayMap, context);
}

@Override
public Void visitArraySort(ArraySort arraySort, CollectorContext context) {
// ARRAY_SORT(lambda, <arr>)

Expression argument = arraySort.getArgument(0);
if ((argument instanceof Lambda)) {
return collectArrayPathInLambda((Lambda) argument, context);
}
return visit(arraySort, context);
}

@Override
public Void visitArrayCount(ArrayCount arrayCount, CollectorContext context) {
// ARRAY_COUNT(<lambda>, <arr>[, ... ])
Expand Down
Loading
Loading