Skip to content

UnicomAI/Unichat-32B-c1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 

Repository files navigation

Unichat-qwen2.5-32B-c1


GitHub | ModelScope | WiseModel

介绍

元景思维链模型,目前我们发布基于Qwen2.5-32B-Instruct实现的版本,后续将开源基于元景34B模型(UniChat 34B)的版本并公开我们的技术报告。

测评结果

Model GSM8K MATH500 OlympidiaBench AIME2024 AMC23
GPT-o1 mini 96.5 93.7 78.8 66.7 92.5
GPT4o 90.4 79.3 48.6 20.0 62.5
Deepseek V3 95.8 90.2 50.1 40.0 80.0
Qwen2.5-MATH-72B 95.8 85.9 49.0 30.0 70.0
Qwen-QwQ 95.6 90.0 57.3 40.0 85.0
Unichat-qwen2.5-32B-c1 95.8 90.6 59.6 43.3 90.0

测评脚本使用Qwen2.5-Math,推理长度设为12288

快速开始

这里提供代码片段来使用模型进行推理。

from modelscope import AutoModelForCausalLM, AutoTokenizer

model_name = "UnicomAI/Unichat-32B-c1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "9.8和9.11哪个数比较大?"
messages = [
    {"role": "system", "content": "请一步一步推理, 并把最终答案放在 \\boxed{{}} 里。"},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=8192
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published